MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. S33228 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 160
380
Tensile Strength: Ultimate (UTS), MPa 280
570
Tensile Strength: Yield (Proof), MPa 190
210

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 960
470
Thermal Expansion, µm/m-K 25
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
37
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 29
6.2
Embodied Energy, MJ/kg 260
89
Embodied Water, L/kg 900
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
150
Resilience: Unit (Modulus of Resilience), kJ/m3 420
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
20
Strength to Weight: Bending, points 49
19
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
36.5 to 42.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0