MakeItFrom.com
Menu (ESC)

EQ21A Magnesium vs. EN 1.4401 Stainless Steel

EQ21A magnesium belongs to the magnesium alloys classification, while EN 1.4401 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EQ21A magnesium and the bottom bar is EN 1.4401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.4
14 to 40
Fatigue Strength, MPa 110
200 to 320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 150
410 to 550
Tensile Strength: Ultimate (UTS), MPa 250
600 to 900
Tensile Strength: Yield (Proof), MPa 190
230 to 570

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 160
950
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 80
19
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 27
3.8
Embodied Energy, MJ/kg 210
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 410
130 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 37
21 to 32
Strength to Weight: Bending, points 47
20 to 26
Thermal Diffusivity, mm2/s 62
4.0
Thermal Shock Resistance, points 15
13 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0
62.8 to 71.5
Magnesium (Mg), % 93.9 to 96.8
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0 to 0.010
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0