MakeItFrom.com
Menu (ESC)

EQ21A Magnesium vs. R30556 Alloy

EQ21A magnesium belongs to the magnesium alloys classification, while R30556 alloy belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EQ21A magnesium and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
210
Elongation at Break, % 2.4
45
Fatigue Strength, MPa 110
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
81
Shear Strength, MPa 150
550
Tensile Strength: Ultimate (UTS), MPa 250
780
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 340
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 980
450
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 27
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
70
Density, g/cm3 1.9
8.4
Embodied Carbon, kg CO2/kg material 27
8.7
Embodied Energy, MJ/kg 210
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
290
Resilience: Unit (Modulus of Resilience), kJ/m3 410
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
23
Strength to Weight: Axial, points 37
26
Strength to Weight: Bending, points 47
22
Thermal Diffusivity, mm2/s 62
2.9
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 93.9 to 96.8
0
Manganese (Mn), % 0
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.010
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.2 to 0.8
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0
0.0010 to 0.1
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0