MakeItFrom.com
Menu (ESC)

EQ21A Magnesium vs. S20161 Stainless Steel

EQ21A magnesium belongs to the magnesium alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EQ21A magnesium and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.4
46
Fatigue Strength, MPa 110
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150
690
Tensile Strength: Ultimate (UTS), MPa 250
980
Tensile Strength: Yield (Proof), MPa 190
390

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 980
490
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
12
Density, g/cm3 1.9
7.5
Embodied Carbon, kg CO2/kg material 27
2.7
Embodied Energy, MJ/kg 210
39

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
360
Resilience: Unit (Modulus of Resilience), kJ/m3 410
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
26
Strength to Weight: Axial, points 37
36
Strength to Weight: Bending, points 47
29
Thermal Diffusivity, mm2/s 62
4.0
Thermal Shock Resistance, points 15
22

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0
65.6 to 73.9
Magnesium (Mg), % 93.9 to 96.8
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.010
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 1.5 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0