MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. EN 1.4150 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
220
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.6
20
Fatigue Strength, MPa 70
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 140
460
Tensile Strength: Ultimate (UTS), MPa 150
730
Tensile Strength: Yield (Proof), MPa 100
430

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 250
840
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 970
490
Thermal Conductivity, W/m-K 100
23
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
8.5
Density, g/cm3 1.9
7.6
Embodied Carbon, kg CO2/kg material 25
2.8
Embodied Energy, MJ/kg 190
42
Embodied Water, L/kg 930
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 33
24
Thermal Diffusivity, mm2/s 54
6.2
Thermal Shock Resistance, points 9.2
27

Alloy Composition

Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
79 to 82.8
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.010
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 2.5 to 4.0
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0