MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. EN 1.4961 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while EN 1.4961 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
180
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.6
39
Fatigue Strength, MPa 70
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 140
420
Tensile Strength: Ultimate (UTS), MPa 150
610
Tensile Strength: Yield (Proof), MPa 100
220

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 250
890
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
21
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 25
4.0
Embodied Energy, MJ/kg 190
57
Embodied Water, L/kg 930
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 54
4.3
Thermal Shock Resistance, points 9.2
14

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
65.6 to 72.3
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.010
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0