MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. S32050 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
220
Elastic (Young's, Tensile) Modulus, GPa 44
210
Elongation at Break, % 2.6
46
Fatigue Strength, MPa 70
340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
81
Shear Strength, MPa 140
540
Tensile Strength: Ultimate (UTS), MPa 150
770
Tensile Strength: Yield (Proof), MPa 100
370

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 250
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 25
6.0
Embodied Energy, MJ/kg 190
81
Embodied Water, L/kg 930
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
290
Resilience: Unit (Modulus of Resilience), kJ/m3 120
330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 9.2
17

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.1
0 to 0.4
Iron (Fe), % 0
43.1 to 51.8
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0 to 0.010
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0