MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. S46500 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while S46500 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is S46500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.6
2.3 to 14
Fatigue Strength, MPa 70
550 to 890
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 140
730 to 1120
Tensile Strength: Ultimate (UTS), MPa 150
1260 to 1930
Tensile Strength: Yield (Proof), MPa 100
1120 to 1810

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 250
780
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 970
470
Thermal Expansion, µm/m-K 27
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
15
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 25
3.6
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 930
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
43 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
44 to 68
Strength to Weight: Bending, points 33
33 to 44
Thermal Shock Resistance, points 9.2
44 to 67

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
72.6 to 76.1
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
0 to 0.25
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0 to 0.010
10.7 to 11.3
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.5 to 1.8
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0