MakeItFrom.com
Menu (ESC)

H10 C21000 Brass vs. H10 C53400 Bronze

Both H10 C21000 brass and H10 C53400 bronze are copper alloys. Both are furnished in the H10 (extra spring) temper. They have a moderately high 94% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is H10 C21000 brass and the bottom bar is H10 C53400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 73
93
Rockwell Superficial 30T Hardness 68
79
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 450
720

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 1070
1050
Melting Onset (Solidus), °C 1050
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 230
69
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
15
Electrical Conductivity: Equal Weight (Specific), % IACS 57
15

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 310
350

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 14
22
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 69
21
Thermal Shock Resistance, points 15
26

Alloy Composition

Copper (Cu), % 94 to 96
91.8 to 95.7
Iron (Fe), % 0 to 0.050
0 to 0.1
Lead (Pb), % 0 to 0.030
0.8 to 1.2
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
3.5 to 5.8
Zinc (Zn), % 3.7 to 6.0
0 to 0.3
Residuals, % 0
0 to 0.5