MakeItFrom.com
Menu (ESC)

G-CoCr28 Cobalt vs. C14200 Copper

G-CoCr28 cobalt belongs to the cobalt alloys classification, while C14200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is G-CoCr28 cobalt and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 6.7
8.0 to 45
Fatigue Strength, MPa 130
76 to 130
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 83
43
Tensile Strength: Ultimate (UTS), MPa 560
220 to 370
Tensile Strength: Yield (Proof), MPa 260
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1200
200
Melting Completion (Liquidus), °C 1330
1080
Melting Onset (Solidus), °C 1270
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 8.5
190
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 100
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 84
41
Embodied Water, L/kg 440
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 160
24 to 500
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
6.8 to 11
Strength to Weight: Bending, points 19
9.1 to 13
Thermal Diffusivity, mm2/s 2.2
56
Thermal Shock Resistance, points 14
7.9 to 13

Alloy Composition

Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0.050 to 0.25
0
Chromium (Cr), % 27 to 30
0
Cobalt (Co), % 48 to 52
0
Copper (Cu), % 0
99.4 to 99.835
Iron (Fe), % 9.7 to 24.5
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0