MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. AISI 301LN Stainless Steel

Grade 1 titanium belongs to the titanium alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
23 to 51
Fatigue Strength, MPa 170
270 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 200
450 to 670
Tensile Strength: Ultimate (UTS), MPa 310
630 to 1060
Tensile Strength: Yield (Proof), MPa 220
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 20
15
Thermal Expansion, µm/m-K 8.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
39
Embodied Water, L/kg 110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 230
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
22 to 38
Strength to Weight: Bending, points 23
21 to 30
Thermal Diffusivity, mm2/s 8.2
4.0
Thermal Shock Resistance, points 24
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
70.7 to 77.9
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.070 to 0.2
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0