Grade 1 Titanium vs. EN 1.1170 Steel
Grade 1 titanium belongs to the titanium alloys classification, while EN 1.1170 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is grade 1 titanium and the bottom bar is EN 1.1170 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 120 | |
180 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 28 | |
16 to 17 |
Fatigue Strength, MPa | 170 | |
220 to 330 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 39 | |
73 |
Shear Strength, MPa | 200 | |
390 to 450 |
Tensile Strength: Ultimate (UTS), MPa | 310 | |
640 to 730 |
Tensile Strength: Yield (Proof), MPa | 220 | |
330 to 500 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
250 |
Maximum Temperature: Mechanical, °C | 320 | |
400 |
Melting Completion (Liquidus), °C | 1660 | |
1460 |
Melting Onset (Solidus), °C | 1610 | |
1420 |
Specific Heat Capacity, J/kg-K | 540 | |
470 |
Thermal Conductivity, W/m-K | 20 | |
50 |
Thermal Expansion, µm/m-K | 8.8 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.7 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 7.3 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 37 | |
2.1 |
Density, g/cm3 | 4.5 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 31 | |
1.5 |
Embodied Energy, MJ/kg | 510 | |
19 |
Embodied Water, L/kg | 110 | |
49 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 79 | |
91 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 | |
290 to 670 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
24 |
Strength to Weight: Axial, points | 19 | |
23 to 26 |
Strength to Weight: Bending, points | 23 | |
21 to 23 |
Thermal Diffusivity, mm2/s | 8.2 | |
13 |
Thermal Shock Resistance, points | 24 | |
20 to 23 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0.25 to 0.32 |
Chromium (Cr), % | 0 | |
0 to 0.4 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.2 | |
96.7 to 98.5 |
Manganese (Mn), % | 0 | |
1.3 to 1.7 |
Molybdenum (Mo), % | 0 | |
0 to 0.1 |
Nickel (Ni), % | 0 | |
0 to 0.4 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.18 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.035 |
Silicon (Si), % | 0 | |
0 to 0.4 |
Sulfur (S), % | 0 | |
0 to 0.035 |
Titanium (Ti), % | 99.095 to 100 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |