MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. C86300 Bronze

Grade 1 titanium belongs to the titanium alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
250
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
14
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 310
850
Tensile Strength: Yield (Proof), MPa 220
480

Thermal Properties

Latent Heat of Fusion, J/g 420
200
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
920
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
420
Thermal Conductivity, W/m-K 20
35
Thermal Expansion, µm/m-K 8.8
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
3.0
Embodied Energy, MJ/kg 510
51
Embodied Water, L/kg 110
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
100
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 19
30
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 8.2
11
Thermal Shock Resistance, points 24
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
60 to 66
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 99.095 to 100
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0