MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. N10629 Nickel

Grade 1 titanium belongs to the titanium alloys classification, while N10629 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 28
45
Fatigue Strength, MPa 170
340
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
83
Shear Strength, MPa 200
600
Tensile Strength: Ultimate (UTS), MPa 310
860
Tensile Strength: Yield (Proof), MPa 220
400

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
910
Melting Completion (Liquidus), °C 1660
1610
Melting Onset (Solidus), °C 1610
1560
Specific Heat Capacity, J/kg-K 540
390
Thermal Expansion, µm/m-K 8.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
75
Density, g/cm3 4.5
9.2
Embodied Carbon, kg CO2/kg material 31
15
Embodied Energy, MJ/kg 510
190
Embodied Water, L/kg 110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
320
Resilience: Unit (Modulus of Resilience), kJ/m3 230
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 24
27

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
1.0 to 6.0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
65 to 72.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0