MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. S20431 Stainless Steel

Grade 1 titanium belongs to the titanium alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
46
Fatigue Strength, MPa 170
320
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 200
500
Tensile Strength: Ultimate (UTS), MPa 310
710
Tensile Strength: Yield (Proof), MPa 220
350

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 20
15
Thermal Expansion, µm/m-K 8.8
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.5
Embodied Energy, MJ/kg 510
36
Embodied Water, L/kg 110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
270
Resilience: Unit (Modulus of Resilience), kJ/m3 230
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 23
23
Thermal Diffusivity, mm2/s 8.2
4.0
Thermal Shock Resistance, points 24
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
66.1 to 74.4
Manganese (Mn), % 0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0