MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. S21603 Stainless Steel

Grade 1 titanium belongs to the titanium alloys classification, while S21603 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is S21603 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
45
Fatigue Strength, MPa 170
360
Poisson's Ratio 0.32
0.28
Reduction in Area, % 36
57
Shear Modulus, GPa 39
79
Shear Strength, MPa 200
490
Tensile Strength: Ultimate (UTS), MPa 310
690
Tensile Strength: Yield (Proof), MPa 220
390

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Expansion, µm/m-K 8.8
17

Otherwise Unclassified Properties

Base Metal Price, % relative 37
17
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
3.6
Embodied Energy, MJ/kg 510
50
Embodied Water, L/kg 110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
270
Resilience: Unit (Modulus of Resilience), kJ/m3 230
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 24
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17.5 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
57.6 to 67.8
Manganese (Mn), % 0
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
5.0 to 7.0
Nitrogen (N), % 0 to 0.030
0.25 to 0.5
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0