MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. 8011A Aluminum

Grade 12 titanium belongs to the titanium alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 21
1.7 to 28
Fatigue Strength, MPa 280
33 to 76
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 530
100 to 180
Tensile Strength: Yield (Proof), MPa 410
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
630
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
210
Thermal Expansion, µm/m-K 9.6
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
56
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.2
Embodied Energy, MJ/kg 500
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 770
8.2 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 32
11 to 18
Strength to Weight: Bending, points 32
18 to 26
Thermal Diffusivity, mm2/s 8.5
86
Thermal Shock Resistance, points 37
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 97.6 to 99.2
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15