MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. EN 1.4005 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
13 to 21
Fatigue Strength, MPa 280
240 to 290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 330
390 to 450
Tensile Strength: Ultimate (UTS), MPa 530
630 to 750
Tensile Strength: Yield (Proof), MPa 410
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
760
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 500
28
Embodied Water, L/kg 110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 770
350 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
23 to 27
Strength to Weight: Bending, points 32
21 to 24
Thermal Diffusivity, mm2/s 8.5
8.1
Thermal Shock Resistance, points 37
23 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82.4 to 87.8
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.4
0 to 0.6
Nickel (Ni), % 0.6 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0