MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. EN 1.4122 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
14
Fatigue Strength, MPa 280
260 to 360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 330
480 to 520
Tensile Strength: Ultimate (UTS), MPa 530
790 to 850
Tensile Strength: Yield (Proof), MPa 410
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.4
Embodied Energy, MJ/kg 500
33
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 770
520 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
28 to 31
Strength to Weight: Bending, points 32
25 to 26
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 37
28 to 30

Alloy Composition

Carbon (C), % 0 to 0.080
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
77.2 to 83.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.4
0.8 to 1.3
Nickel (Ni), % 0.6 to 0.9
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0