MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. C48600 Brass

Grade 12 titanium belongs to the titanium alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 21
20 to 25
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
39
Shear Strength, MPa 330
180 to 230
Tensile Strength: Ultimate (UTS), MPa 530
280 to 360
Tensile Strength: Yield (Proof), MPa 410
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
900
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 770
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 32
9.5 to 12
Strength to Weight: Bending, points 32
12 to 14
Thermal Diffusivity, mm2/s 8.5
36
Thermal Shock Resistance, points 37
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
59 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0
1.0 to 2.5
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 97.6 to 99.2
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4