MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. C67600 Bronze

Grade 12 titanium belongs to the titanium alloys classification, while C67600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 21
13 to 33
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
40
Shear Strength, MPa 330
270 to 350
Tensile Strength: Ultimate (UTS), MPa 530
430 to 570
Tensile Strength: Yield (Proof), MPa 410
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
890
Melting Onset (Solidus), °C 1610
870
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
24
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
27

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 770
140 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 32
15 to 20
Strength to Weight: Bending, points 32
16 to 19
Thermal Diffusivity, mm2/s 8.5
35
Thermal Shock Resistance, points 37
14 to 19

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
57 to 60
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0
0.050 to 0.5
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 97.6 to 99.2
0
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5