MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. N07773 Nickel

Grade 12 titanium belongs to the titanium alloys classification, while N07773 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is N07773 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
40
Fatigue Strength, MPa 280
220
Poisson's Ratio 0.32
0.29
Reduction in Area, % 28
56
Shear Modulus, GPa 39
77
Shear Strength, MPa 330
480
Tensile Strength: Ultimate (UTS), MPa 530
710
Tensile Strength: Yield (Proof), MPa 410
270

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1510
Melting Onset (Solidus), °C 1610
1460
Specific Heat Capacity, J/kg-K 540
450
Thermal Expansion, µm/m-K 9.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
75
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 31
13
Embodied Energy, MJ/kg 500
180
Embodied Water, L/kg 110
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 770
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 32
21
Thermal Shock Resistance, points 37
20

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
18 to 27
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 32
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
2.5 to 5.5
Nickel (Ni), % 0.6 to 0.9
45 to 60
Niobium (Nb), % 0
2.5 to 6.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 97.6 to 99.2
0 to 2.0
Tungsten (W), % 0
0 to 6.0
Residuals, % 0 to 0.4
0