MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. N08926 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while N08926 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is N08926 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
40
Fatigue Strength, MPa 280
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
80
Shear Strength, MPa 330
500
Tensile Strength: Ultimate (UTS), MPa 530
740
Tensile Strength: Yield (Proof), MPa 410
330

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
6.2
Embodied Energy, MJ/kg 500
84
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 770
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 8.5
3.2
Thermal Shock Resistance, points 37
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
41.7 to 50.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.2 to 0.4
6.0 to 7.0
Nickel (Ni), % 0.6 to 0.9
24 to 26
Nitrogen (N), % 0 to 0.030
0.15 to 0.25
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0