MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S41050 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
25
Fatigue Strength, MPa 280
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 330
300
Tensile Strength: Ultimate (UTS), MPa 530
470
Tensile Strength: Yield (Proof), MPa 410
230

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
720
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
27
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.9
Embodied Energy, MJ/kg 500
27
Embodied Water, L/kg 110
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98
Resilience: Unit (Modulus of Resilience), kJ/m3 770
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 32
17
Thermal Diffusivity, mm2/s 8.5
7.2
Thermal Shock Resistance, points 37
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
84.2 to 88.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
0.6 to 1.1
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0