MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S41425 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
280
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
17
Fatigue Strength, MPa 280
450
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
51
Shear Modulus, GPa 39
77
Shear Strength, MPa 330
570
Tensile Strength: Ultimate (UTS), MPa 530
920
Tensile Strength: Yield (Proof), MPa 410
750

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
810
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
2.9
Embodied Energy, MJ/kg 500
40
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 770
1420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
33
Strength to Weight: Bending, points 32
27
Thermal Diffusivity, mm2/s 8.5
4.4
Thermal Shock Resistance, points 37
33

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
74 to 81.9
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
1.5 to 2.0
Nickel (Ni), % 0.6 to 0.9
4.0 to 7.0
Nitrogen (N), % 0 to 0.030
0.060 to 0.12
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0