MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. 5040 Aluminum

Grade 14 titanium belongs to the titanium alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 23
5.7 to 6.8
Fatigue Strength, MPa 220
100 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 290
140 to 150
Tensile Strength: Ultimate (UTS), MPa 460
240 to 260
Tensile Strength: Yield (Proof), MPa 310
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
190
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
600
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
160
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 32
8.3
Embodied Energy, MJ/kg 520
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 450
260 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 28
24 to 26
Strength to Weight: Bending, points 29
31 to 32
Thermal Diffusivity, mm2/s 8.5
64
Thermal Shock Resistance, points 35
10 to 11

Alloy Composition

Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0
0.9 to 1.4
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 0.3
Titanium (Ti), % 98.4 to 99.56
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15