MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. AISI 439 Stainless Steel

Grade 14 titanium belongs to the titanium alloys classification, while AISI 439 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 220
170
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
51
Shear Modulus, GPa 41
77
Shear Strength, MPa 290
310
Tensile Strength: Ultimate (UTS), MPa 460
490
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1510
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.3
Embodied Energy, MJ/kg 520
34
Embodied Water, L/kg 210
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
95
Resilience: Unit (Modulus of Resilience), kJ/m3 450
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 8.5
6.7
Thermal Shock Resistance, points 35
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
77.1 to 82.8
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.4 to 0.6
0 to 0.5
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.4 to 99.56
0.2 to 1.1
Residuals, % 0 to 0.4
0