MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. ASTM A372 Grade G Steel

Grade 14 titanium belongs to the titanium alloys classification, while ASTM A372 grade G steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is ASTM A372 grade G steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
20 to 22
Fatigue Strength, MPa 220
310 to 380
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 290
410 to 570
Tensile Strength: Ultimate (UTS), MPa 460
650 to 910
Tensile Strength: Yield (Proof), MPa 310
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
410
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
46
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.2
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
1.5
Embodied Energy, MJ/kg 520
20
Embodied Water, L/kg 210
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 450
500 to 810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 28
23 to 32
Strength to Weight: Bending, points 29
21 to 27
Thermal Diffusivity, mm2/s 8.5
13
Thermal Shock Resistance, points 35
19 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0.25 to 0.35
Chromium (Cr), % 0
0.4 to 0.65
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
97.4 to 98.4
Manganese (Mn), % 0
0.7 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.015
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0