MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. EN 1.4104 Stainless Steel

Grade 14 titanium belongs to the titanium alloys classification, while EN 1.4104 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is EN 1.4104 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
11 to 23
Fatigue Strength, MPa 220
230 to 310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 290
400 to 450
Tensile Strength: Ultimate (UTS), MPa 460
630 to 750
Tensile Strength: Yield (Proof), MPa 310
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
860
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.2
Embodied Energy, MJ/kg 520
30
Embodied Water, L/kg 210
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 450
310 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 28
23 to 27
Strength to Weight: Bending, points 29
21 to 24
Thermal Diffusivity, mm2/s 8.5
6.7
Thermal Shock Resistance, points 35
22 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0.1 to 0.17
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
78.8 to 84.1
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0