MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. C50100 Bronze

Grade 14 titanium belongs to the titanium alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 23
40
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 290
180
Tensile Strength: Ultimate (UTS), MPa 460
270
Tensile Strength: Yield (Proof), MPa 310
82

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1070
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
230
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
55
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
55

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 32
2.6
Embodied Energy, MJ/kg 520
42
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
82
Resilience: Unit (Modulus of Resilience), kJ/m3 450
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 28
8.3
Strength to Weight: Bending, points 29
10
Thermal Diffusivity, mm2/s 8.5
66
Thermal Shock Resistance, points 35
9.5

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
98.6 to 99.49
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0.010 to 0.050
Ruthenium (Ru), % 0.040 to 0.060
0
Tin (Sn), % 0
0.5 to 0.8
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0
0 to 0.5