MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. C87700 Bronze

Grade 14 titanium belongs to the titanium alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 23
3.6
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 460
300
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
980
Melting Onset (Solidus), °C 1610
900
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
45
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
48

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 520
45
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 450
64
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 28
9.8
Strength to Weight: Bending, points 29
12
Thermal Diffusivity, mm2/s 8.5
34
Thermal Shock Resistance, points 35
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
87.5 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0.4 to 0.6
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.15
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
2.5 to 3.5
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 98.4 to 99.56
0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8