MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. S20433 Stainless Steel

Grade 14 titanium belongs to the titanium alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
46
Fatigue Strength, MPa 220
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 290
440
Tensile Strength: Ultimate (UTS), MPa 460
630
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
900
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 520
39
Embodied Water, L/kg 210
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
230
Resilience: Unit (Modulus of Resilience), kJ/m3 450
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 35
14

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
64.1 to 72.4
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0.4 to 0.6
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0