MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. S31730 Stainless Steel

Grade 14 titanium belongs to the titanium alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 220
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 290
370
Tensile Strength: Ultimate (UTS), MPa 460
540
Tensile Strength: Yield (Proof), MPa 310
200

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
470
Thermal Expansion, µm/m-K 8.7
16

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 32
4.6
Embodied Energy, MJ/kg 520
63
Embodied Water, L/kg 210
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
170
Resilience: Unit (Modulus of Resilience), kJ/m3 450
99
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 29
18
Thermal Shock Resistance, points 35
12

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
52.4 to 61
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0.4 to 0.6
15 to 16.5
Nitrogen (N), % 0 to 0.030
0 to 0.045
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0