MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. SAE-AISI 1026 Steel

Grade 15 titanium belongs to the titanium alloys classification, while SAE-AISI 1026 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
17 to 27
Fatigue Strength, MPa 290
200 to 310
Poisson's Ratio 0.32
0.29
Reduction in Area, % 28
45 to 55
Shear Modulus, GPa 41
73
Shear Strength, MPa 340
320 to 340
Tensile Strength: Ultimate (UTS), MPa 540
500 to 550
Tensile Strength: Yield (Proof), MPa 430
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
52
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 32
1.4
Embodied Energy, MJ/kg 520
18
Embodied Water, L/kg 210
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 870
200 to 580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 33
18 to 20
Strength to Weight: Bending, points 33
18 to 19
Thermal Diffusivity, mm2/s 8.4
14
Thermal Shock Resistance, points 41
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.080
0.22 to 0.28
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.7 to 99.18
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.2 to 99.56
0
Residuals, % 0 to 0.4
0