MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. C67400 Bronze

Grade 15 titanium belongs to the titanium alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
22 to 28
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
41
Shear Strength, MPa 340
310 to 350
Tensile Strength: Ultimate (UTS), MPa 540
480 to 610
Tensile Strength: Yield (Proof), MPa 430
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
130
Melting Completion (Liquidus), °C 1660
890
Melting Onset (Solidus), °C 1610
870
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
100
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
26

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 32
2.8
Embodied Energy, MJ/kg 520
48
Embodied Water, L/kg 210
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 870
300 to 660
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 33
17 to 22
Strength to Weight: Bending, points 33
17 to 20
Thermal Diffusivity, mm2/s 8.4
32
Thermal Shock Resistance, points 41
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
57 to 60
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0.4 to 0.6
0 to 0.25
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 98.2 to 99.56
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5