MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. N08320 Stainless Steel

Grade 15 titanium belongs to the titanium alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
40
Fatigue Strength, MPa 290
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 340
400
Tensile Strength: Ultimate (UTS), MPa 540
580
Tensile Strength: Yield (Proof), MPa 430
220

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1350
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 32
4.9
Embodied Energy, MJ/kg 520
69
Embodied Water, L/kg 210
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 870
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 33
20
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 8.4
3.3
Thermal Shock Resistance, points 41
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
21 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
40.4 to 50
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0.4 to 0.6
25 to 27
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.2 to 99.56
0
Residuals, % 0 to 0.4
0