MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. N08801 Stainless Steel

Grade 15 titanium belongs to the titanium alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
34
Fatigue Strength, MPa 290
260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 340
570
Tensile Strength: Ultimate (UTS), MPa 540
860
Tensile Strength: Yield (Proof), MPa 430
190

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1090
Melting Completion (Liquidus), °C 1660
1390
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
30
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 32
5.5
Embodied Energy, MJ/kg 520
79
Embodied Water, L/kg 210
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 870
92
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 33
30
Strength to Weight: Bending, points 33
25
Thermal Diffusivity, mm2/s 8.4
3.3
Thermal Shock Resistance, points 41
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
39.5 to 50.3
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.4 to 0.6
30 to 34
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.2 to 99.56
0.75 to 1.5
Residuals, % 0 to 0.4
0