MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. S40920 Stainless Steel

Grade 15 titanium belongs to the titanium alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
22
Fatigue Strength, MPa 290
130
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 340
270
Tensile Strength: Ultimate (UTS), MPa 540
430
Tensile Strength: Yield (Proof), MPa 430
190

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
710
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
6.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.0
Embodied Energy, MJ/kg 520
28
Embodied Water, L/kg 210
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
78
Resilience: Unit (Modulus of Resilience), kJ/m3 870
97
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 33
15
Strength to Weight: Bending, points 33
16
Thermal Diffusivity, mm2/s 8.4
6.9
Thermal Shock Resistance, points 41
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
85.1 to 89.4
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.4 to 0.6
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0 to 0.030
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.2 to 99.56
0.15 to 0.5
Residuals, % 0 to 0.4
0