MakeItFrom.com
Menu (ESC)

Grade 15 Titanium vs. S42010 Stainless Steel

Grade 15 titanium belongs to the titanium alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 15 titanium and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
18
Fatigue Strength, MPa 290
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 340
370
Tensile Strength: Ultimate (UTS), MPa 540
590
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
800
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
29
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.2
Embodied Energy, MJ/kg 520
30
Embodied Water, L/kg 210
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
95
Resilience: Unit (Modulus of Resilience), kJ/m3 870
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 8.4
7.9
Thermal Shock Resistance, points 41
21

Alloy Composition

Carbon (C), % 0 to 0.080
0.15 to 0.3
Chromium (Cr), % 0
13.5 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
80.9 to 85.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 0.4 to 0.6
0.35 to 0.85
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.2 to 99.56
0
Residuals, % 0 to 0.4
0