MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. 1085 Aluminum

Grade 16 titanium belongs to the titanium alloys classification, while 1085 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is 1085 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 23
4.5 to 39
Fatigue Strength, MPa 240
22 to 49
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 250
48 to 79
Tensile Strength: Ultimate (UTS), MPa 400
73 to 140
Tensile Strength: Yield (Proof), MPa 340
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
230
Thermal Expansion, µm/m-K 9.2
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
61
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
200

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.3
Embodied Energy, MJ/kg 600
160
Embodied Water, L/kg 230
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 550
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 25
7.5 to 14
Strength to Weight: Bending, points 27
14 to 22
Thermal Diffusivity, mm2/s 8.9
94
Thermal Shock Resistance, points 29
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0
99.85 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.12
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 0.020
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 98.8 to 99.96
0 to 0.020
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.010