MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. 4015 Aluminum

Grade 16 titanium belongs to the titanium alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 23
1.1 to 23
Fatigue Strength, MPa 240
46 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 250
82 to 120
Tensile Strength: Ultimate (UTS), MPa 400
130 to 220
Tensile Strength: Yield (Proof), MPa 340
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 420
420
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
600
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
160
Thermal Expansion, µm/m-K 9.2
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
41
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.1
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 550
18 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 25
13 to 22
Strength to Weight: Bending, points 27
21 to 30
Thermal Diffusivity, mm2/s 8.9
66
Thermal Shock Resistance, points 29
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 0
94.9 to 97.9
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0
0.6 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
1.4 to 2.2
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15