MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. 5083 Aluminum

Grade 16 titanium belongs to the titanium alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 23
1.1 to 17
Fatigue Strength, MPa 240
93 to 190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 250
170 to 220
Tensile Strength: Ultimate (UTS), MPa 400
290 to 390
Tensile Strength: Yield (Proof), MPa 340
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
190
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
580
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
120
Thermal Expansion, µm/m-K 9.2
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
29
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
96

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.9
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 550
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 25
29 to 40
Strength to Weight: Bending, points 27
36 to 44
Thermal Diffusivity, mm2/s 8.9
48
Thermal Shock Resistance, points 29
12 to 17

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.4
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0
0.4 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 98.8 to 99.96
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15