MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. 6005A Aluminum

Grade 16 titanium belongs to the titanium alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 23
8.6 to 17
Fatigue Strength, MPa 240
55 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 38
26
Shear Strength, MPa 250
120 to 180
Tensile Strength: Ultimate (UTS), MPa 400
190 to 300
Tensile Strength: Yield (Proof), MPa 340
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
600
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
180 to 190
Thermal Expansion, µm/m-K 9.2
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
150 to 170

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 36
8.3
Embodied Energy, MJ/kg 600
150
Embodied Water, L/kg 230
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 550
76 to 530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 25
20 to 30
Strength to Weight: Bending, points 27
27 to 36
Thermal Diffusivity, mm2/s 8.9
72 to 79
Thermal Shock Resistance, points 29
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.5 to 0.9
Titanium (Ti), % 98.8 to 99.96
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15