Grade 16 Titanium vs. 7010 Aluminum
Grade 16 titanium belongs to the titanium alloys classification, while 7010 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is grade 16 titanium and the bottom bar is 7010 aluminum.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
70 |
Elongation at Break, % | 23 | |
3.9 to 6.8 |
Fatigue Strength, MPa | 240 | |
160 to 190 |
Poisson's Ratio | 0.32 | |
0.32 |
Shear Modulus, GPa | 38 | |
26 |
Shear Strength, MPa | 250 | |
300 to 340 |
Tensile Strength: Ultimate (UTS), MPa | 400 | |
520 to 590 |
Tensile Strength: Yield (Proof), MPa | 340 | |
410 to 540 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
380 |
Maximum Temperature: Mechanical, °C | 320 | |
200 |
Melting Completion (Liquidus), °C | 1660 | |
630 |
Melting Onset (Solidus), °C | 1610 | |
480 |
Specific Heat Capacity, J/kg-K | 540 | |
860 |
Thermal Conductivity, W/m-K | 22 | |
150 |
Thermal Expansion, µm/m-K | 9.2 | |
24 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.6 | |
40 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 7.2 | |
120 |
Otherwise Unclassified Properties
Density, g/cm3 | 4.5 | |
3.0 |
Embodied Carbon, kg CO2/kg material | 36 | |
8.3 |
Embodied Energy, MJ/kg | 600 | |
150 |
Embodied Water, L/kg | 230 | |
1120 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 | |
22 to 33 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 550 | |
1230 to 2130 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
45 |
Strength to Weight: Axial, points | 25 | |
47 to 54 |
Strength to Weight: Bending, points | 27 | |
47 to 52 |
Thermal Diffusivity, mm2/s | 8.9 | |
58 |
Thermal Shock Resistance, points | 29 | |
22 to 26 |
Alloy Composition
Aluminum (Al), % | 0 | |
87.9 to 90.6 |
Carbon (C), % | 0 to 0.080 | |
0 |
Chromium (Cr), % | 0 | |
0 to 0.050 |
Copper (Cu), % | 0 | |
1.5 to 2.0 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.3 | |
0 to 0.15 |
Magnesium (Mg), % | 0 | |
2.1 to 2.6 |
Manganese (Mn), % | 0 | |
0 to 0.1 |
Nickel (Ni), % | 0 | |
0 to 0.050 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.25 | |
0 |
Palladium (Pd), % | 0.040 to 0.080 | |
0 |
Silicon (Si), % | 0 | |
0 to 0.12 |
Titanium (Ti), % | 98.8 to 99.96 | |
0 to 0.060 |
Zinc (Zn), % | 0 | |
5.7 to 6.7 |
Zirconium (Zr), % | 0 | |
0.1 to 0.16 |
Residuals, % | 0 | |
0 to 0.15 |