MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. AISI 445 Stainless Steel

Grade 16 titanium belongs to the titanium alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
25
Fatigue Strength, MPa 240
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
78
Shear Strength, MPa 250
310
Tensile Strength: Ultimate (UTS), MPa 400
480
Tensile Strength: Yield (Proof), MPa 340
230

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
950
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
21
Thermal Expansion, µm/m-K 9.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 600
38
Embodied Water, L/kg 230
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
98
Resilience: Unit (Modulus of Resilience), kJ/m3 550
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 8.9
5.6
Thermal Shock Resistance, points 29
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.3 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
74.9 to 80.7
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0