MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. ASTM Grade LCA Steel

Grade 16 titanium belongs to the titanium alloys classification, while ASTM grade LCA steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
27
Fatigue Strength, MPa 240
170
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
40
Shear Modulus, GPa 38
72
Tensile Strength: Ultimate (UTS), MPa 400
500
Tensile Strength: Yield (Proof), MPa 340
230

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
49
Thermal Expansion, µm/m-K 9.2
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 29
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.25
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
96.9 to 100
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0
0 to 1.0