MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. AWS BNi-7

Grade 16 titanium belongs to the titanium alloys classification, while AWS BNi-7 belongs to the nickel alloys. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is AWS BNi-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
170
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 38
67
Tensile Strength: Ultimate (UTS), MPa 400
550

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Melting Completion (Liquidus), °C 1660
890
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
490
Thermal Expansion, µm/m-K 9.2
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
8.8
Embodied Energy, MJ/kg 600
120
Embodied Water, L/kg 230
240

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 27
19
Thermal Shock Resistance, points 29
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
13 to 15
Cobalt (Co), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.2
Manganese (Mn), % 0
0 to 0.040
Nickel (Ni), % 0
73.3 to 77.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
9.7 to 10.5
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.96
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5