MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. EN 1.0303 Steel

Grade 16 titanium belongs to the titanium alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
12 to 25
Fatigue Strength, MPa 240
150 to 230
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
75 to 86
Shear Modulus, GPa 38
73
Shear Strength, MPa 250
220 to 260
Tensile Strength: Ultimate (UTS), MPa 400
290 to 410
Tensile Strength: Yield (Proof), MPa 340
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
53
Thermal Expansion, µm/m-K 9.2
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
7.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
18
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 550
110 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 25
10 to 15
Strength to Weight: Bending, points 27
12 to 16
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 29
9.2 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.020 to 0.060
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
99.335 to 99.71
Manganese (Mn), % 0
0.25 to 0.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0