MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. EN 1.4005 Stainless Steel

Grade 16 titanium belongs to the titanium alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
13 to 21
Fatigue Strength, MPa 240
240 to 290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
76
Shear Strength, MPa 250
390 to 450
Tensile Strength: Ultimate (UTS), MPa 400
630 to 750
Tensile Strength: Yield (Proof), MPa 340
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
760
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
30
Thermal Expansion, µm/m-K 9.2
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.0
Embodied Energy, MJ/kg 600
28
Embodied Water, L/kg 230
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
350 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 25
23 to 27
Strength to Weight: Bending, points 27
21 to 24
Thermal Diffusivity, mm2/s 8.9
8.1
Thermal Shock Resistance, points 29
23 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82.4 to 87.8
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0