Grade 16 Titanium vs. SAE-AISI 1060 Steel
Grade 16 titanium belongs to the titanium alloys classification, while SAE-AISI 1060 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is grade 16 titanium and the bottom bar is SAE-AISI 1060 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 23 | |
10 to 13 |
Fatigue Strength, MPa | 240 | |
260 to 340 |
Poisson's Ratio | 0.32 | |
0.29 |
Reduction in Area, % | 34 | |
34 to 51 |
Shear Modulus, GPa | 38 | |
72 |
Shear Strength, MPa | 250 | |
370 to 450 |
Tensile Strength: Ultimate (UTS), MPa | 400 | |
620 to 740 |
Tensile Strength: Yield (Proof), MPa | 340 | |
400 to 540 |
Thermal Properties
Latent Heat of Fusion, J/g | 420 | |
250 |
Maximum Temperature: Mechanical, °C | 320 | |
400 |
Melting Completion (Liquidus), °C | 1660 | |
1460 |
Melting Onset (Solidus), °C | 1610 | |
1420 |
Specific Heat Capacity, J/kg-K | 540 | |
470 |
Thermal Conductivity, W/m-K | 22 | |
51 |
Thermal Expansion, µm/m-K | 9.2 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 3.6 | |
9.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 7.2 | |
11 |
Otherwise Unclassified Properties
Density, g/cm3 | 4.5 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 36 | |
1.4 |
Embodied Energy, MJ/kg | 600 | |
19 |
Embodied Water, L/kg | 230 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 86 | |
58 to 82 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 550 | |
430 to 790 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
24 |
Strength to Weight: Axial, points | 25 | |
22 to 26 |
Strength to Weight: Bending, points | 27 | |
21 to 23 |
Thermal Diffusivity, mm2/s | 8.9 | |
14 |
Thermal Shock Resistance, points | 29 | |
20 to 24 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0.55 to 0.65 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.3 | |
98.4 to 98.9 |
Manganese (Mn), % | 0 | |
0.6 to 0.9 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.25 | |
0 |
Palladium (Pd), % | 0.040 to 0.080 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Titanium (Ti), % | 98.8 to 99.96 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |